Forums des assistantes maternelles et des parents employeurs
Vous n'êtes pas identifié(e).
- Contributions : Récentes | Sans réponse
Annonce

Pour vous reconnecter, vous devez réinitialiser votre mot de passe.
Pour cela :
- Etape 1: Cliquez sur ce lien de deconnexion
- Etape 2: Cliquez sur ce lien, pour réinitialiser votre mot de passe.
- Etape 3: Sur l'email reçu, cliquez sur le lien pour activer le nouveau mot de passe reçu.
- Etape 4: Voila la connexion se fera maintenant normalement avec le nouveau mot de passe (hésitez pas à le changer une fois connecté)
- Aide:
- Tuto pas à pas chg mot de passe ==> ici
- Index Alphabétique questions/réponses ==> ici
#1 Aujourd'hui 04:46:31
- ewfwfwfwee
- Membre
- Inscription : Aujourd'hui
- Messages : 1
What are some good data science projects?
Here are some good data science projects—suitable for learners and professionals alike—that cover key concepts like data cleaning, visualization, machine learning, and deployment:
1. Customer Churn Prediction
What it covers: Classification, feature engineering, model evaluation.
Use case: Predict which customers are likely to leave a service using historical data.
Tools: Python, scikit-learn, pandas, seaborn.
2. Sales Forecasting
What it covers: Time series analysis, regression, visualization.
Use case: Forecast future sales based on past trends.
Tools: Python, Prophet, ARIMA, Excel, Power BI.
3. Sentiment Analysis of Tweets or Reviews
What it covers: Natural Language Processing (NLP), text preprocessing, classification.
Use case: Analyze public sentiment about products, politics, or brands.
Tools: NLTK, TextBlob, spaCy, Python.
4. Movie Recommendation System
What it covers: Collaborative filtering, content-based filtering, matrix factorization.
Use case: Suggest movies to users based on past ratings or content.
Tools: Python, scikit-learn, Surprise library.
5. Credit Card Fraud Detection
What it covers: Anomaly detection, imbalanced datasets, precision-recall tradeoffs.
Use case: Identify fraudulent transactions from real ones.
Tools: Python, scikit-learn, XGBoost.
6. Healthcare Analysis (e.g., Diabetes Prediction)
What it covers: Classification, medical datasets, ROC/AUC.
Use case: Predict whether a patient is at risk based on medical data.
Tools: Python, pandas, scikit-learn.
Hors ligne